Статистика


Онлайн всего: 1
Гостей: 1
Пользователей: 0

Форма входа

Поиск

Категории раздела

Диплом [83] Курсовая [9]
Реферат [2] Разное [20]




Чт, 16.05.2024, 14:02
Приветствую Вас Гость | RSS
ДИПЛОМНИК т.8926-530-7902,strokdip@mail.ru Дипломные работы на заказ.
Главная | Регистрация | Вход
КАТАЛОГ ДИПЛОМНЫХ, КУРСОВЫХ РАБОТ


Главная » Каталог дипломов » Технология » Разное [ Добавить материал ]

1629. Контрольная материаловедение.
Контрольная | 03.11.2009, 18:51

Содержание

1. Физические и химические свойства металлов. 3
2.Состав, классификация, основные свойства резины. 8
3. Свойства твердого топлива. 19
Список использованной литературы 24

 

2.Состав, классификация, основные свойства резины.

 

Резиной называется продукт специальной обработки (вулканизации) каучука и серы с различными добавками.

Резина отличается от других материалов высокими эластическими свойствами, которые присущи каучуку - главному исходному материалу резины. Для резиновых материалов характерна высокая стойкость к истиранию, газо- и водонепроницаемость, химическая стойкость, электроизолирующие свойства и небольшая плотность.

По условиям эксплуатации к резине предъявляются раз­личные требования. Резиновая обкладка транспортерных лент, пе­редающих руду или каменный уголь, при низкой температуре должна быть морозостойкой и хорошо противостоять истиранию;

резиновая камера в рукавах для нефтепродуктов должна быть стойкой к набуханию; резиновая обкладка железнодорожных ци­стерн для перевозки соляной кислоты—стойкой к ее химическому действию и т. д.

Особые требования предъявляются к резиновым изделиям, при­меняемым в самолетах, в конструкциях которых имеются сотни разнообразных резиновых деталей. Такие изделия, наряду с ком­пактностью и малым весом, должны быть эластичны и прочны. Очень важно сохранение деталями их свойств в широких пределах температур и в ряде случаев при воздействии различных жидких и газовых сред. При полете со скоростью 3600 км/ч даже на высоте 5000 м температура нагрева обшивки доходит до +400 °С; детали же находящиеся в узлах двигателей, должны сохранять свои свой­ства при температуре, доходящей до +500 ˚С. В то же время ряд деталей подвергается воздействию температур порядка минус 60 °С и ниже. Поскольку габариты деталей самолетов оставаться практически постоянными в продолжение всего срока службы, малые остаточные деформации сжатия являются необхо­димым качеством таких резин. Еще большие требования предъ­являются к резинам для ракетостроения.

Наряду с широко применяемыми в резиновом производстве каучуками об­щего назначения натуральным (НК) и бутадиен-стирольными (СКС-ЗОА, СКС-30, СКМС-30 и др.) используются и специальные:

 хлоропреновые каучуки (А, Б, С, НТ), бутадиен-нитрильные (СКН-18, СКН-26, СКН-40, СКН-40Т), бутилкаучук, химически стойкие фторкаучуки (СКФ-32-12, СКФ-62-13), теплостойкие кремнийорганические полимеры (СКТ). Осваиваются стереорегулярные каучуки: полибутадиеновый (СКД) и изопреновые (СКИ). Ведутся поиски новых каучуков на основе соединений, содержащих бор, фосфор, азот и другие элементы.

Резина как конструкционный материал в ряде ее свойств суще­ственно отлична от металлов и других материалов. Важнейшая особенность ее состоит в способности к перенесению под действием внешней нагрузки значительных деформаций без разрушения. К ос­новным особенностям резины также относятся: малые величины модулей при сдвиге, растяжении и сжатии; большое влияние дли­тельности действия приложенной нагрузки и температурного фак­тора на зависимость напряжениедеформация; практически по­стоянный объем при деформации; почти полная обратимость де­формации; значительные механические потери при циклических деформациях.

Вулканизаты мягкой резины под влиянием ряда складских или эксплуатационных факторов, действующих изолированно или чаще комплексно, изменяют свои технически ценные свойства. Измене­ние сводится к снижению эластичности и прочности, к появлению затвердения, хрупкости, трещин, изменению окраски, увеличению газопроницаемости, т. е. к большей или меньшей потере изделиями их технической ценности. Влияние кислорода воздуха, и в особен­ности озона, ведет к старению и утомлению резины. Этому способствуют: тепло и свет, напряжения, возникающие при динамическом или статическом нагружении, включая и нерациональное складирование, влияние агрессивных сред или каталитическое действие солей металлов.

Низкие температуры ведут к снижению эластичности резины, к повышению ее хрупкости. Эти изменения углубляются с длитель­ностью охлаждения. Однако с возвращением к нормальным температурам первоначальные свойства восстанавливаются. Влияние размеров и особенностей формы изделия в резине сказывается зна­чительно больше, чем в других конструкционных материалах. Ста­билизация в резине ее технически ценных свойств, борьба с явле­ниями старения, утомления и замерзания представляют в настоя­щее время одну из важных задач современной технологии резины.

           Пластикация. Одно из важнейших свойств каучука – пластичность – используется в производстве резиновых изделий. Чтобы смешать каучук с другими ингредиентами резиновой смеси, его нужно сначала умягчить, или пластицировать, путем механической или термической обработки. Этот процесс называется пластикацией каучука. Открытие Т.Хэнкоком в 1820 возможности пластикации каучука имело огромное значение для резиновой промышленности. Его пластикатор состоял из шипованного ротора, вращающегося в шипованном полом цилиндре; это устройство имело ручной привод. В современной резиновой промышленности используются три типа подобных машин до ввода других компонентов резиновой смеси в каучук. Это – каучукотерка, смеситель Бенбери и пластикатор Гордона.

Использование грануляторов – машин, которые разрезают каучук на маленькие гранулы или пластинки одинаковых размеров и формы, – облегчает операции по дозировке и управлению процессом обработки каучука. каучук подается в гранулятор по выходе из пластикатора. Получающиеся гранулы смешиваются с углеродной сажей и маслами в смесителе Бенбери, образуя маточную смесь, которая также гранулируется. После обработки в смесителе Бенбери производится смешивание с вулканизующими веществами, серой и ускорителями вулканизации.

Приготовление резиновой смеси. Химическое соединение только из каучука и серы имело бы ограниченное практическое применение. Чтобы улучшить физические свойства каучука и сделать его более пригодным для эксплуатации в различных применениях, необходимо модифицировать его свойства путем добавления других веществ. Все вещества, смешиваемые с каучуком перед вулканизацией, включая серу, называются ингредиентами резиновой смеси. Они вызывают как химические, так и физические изменения в каучуке. Их назначение – модифицировать твердость, прочность и ударную вязкость и увеличить стойкость к истиранию, маслам, кислороду, химическим растворителям, теплу и растрескиванию. Для изготовления резин разных применений используются различные составы.

             Ускорители и активаторы. Некоторые химически активные вещества, называемые ускорителями, при использовании вместе с серой уменьшают время вулканизации и улучшают физические свойства каучука. Примерами неорганических ускорителей являются свинцовые белила, свинцовый глет (монооксид свинца), известь и магнезия (оксид магния). Органические ускорители гораздо более активны и являются важной частью почти любой резиновой смеси. Они вводятся в смесь в относительно малой доле: обычно бывает достаточно от 0,5 до 1,0 части на 100 частей каучука. Большинство ускорителей полностью проявляет свою эффективность в присутствии активаторов, таких, как окись цинка, а для некоторых требуется органическая кислота, например стеариновая. Поэтому современные рецептуры резиновых смесей обычно включают окись цинка и стеариновую кислоту.

           Мягчители и пластификаторы. Мягчители и пластификаторы обычно используются для сокращения времени приготовления резиновой смеси и понижения температуры процесса. Они также способствуют диспергированию ингредиентов смеси, вызывая набухание или растворение каучука. Типичными мягчителями являются парафиновое и растительные масла, воски, олеиновая и стеариновая кислоты, хвойная смола, каменноугольная смола и канифоль.

Упрочняющие наполнители. Некоторые вещества усиливают каучук, придавая ему прочность и сопротивляемость износу. Они называются упрочняющими наполнителями. Углеродная (газовая) сажа в тонко измельченной форме – наиболее распространенный упрочняющий наполнитель; она относительно дешева и является одним из самых эффективных веществ такого рода. Протекторная резина автомобильной шины содержит приблизительно 45 частей углеродной сажи на 100 частей каучука.

              Другими широко используемыми упрочняющими наполнителями являются окись цинка, карбонат магния, кремнезем, карбонат кальция и некоторые глины, однако все они менее эффективны, чем газовая сажа.

Наполнители. На заре каучуковой промышленности еще до появления автомобиля некоторые вещества добавлялись к каучуку для удешевления получаемых из него продуктов. Упрочнение еще не имело большого значения, и такие вещества просто служили для увеличения объема и массы резины. Их называют наполнителями или инертными ингредиентами резиновой смеси. Распространенными наполнителями являются бариты, мел, некоторые глины и диатомит.

           Антиоксиданты. Использование антиоксидантов для сохранения нужных свойств резиновых изделий в процессе их старения и эксплуатации началось после Второй мировой войны. Как и ускорители вулканизации, антиоксиданты – сложные органические соединения, которые при концентрации 1–2 части на 100 частей каучука препятствуют росту жесткости и хрупкости резины. Воздействие воздуха, озона, тепла и света – основная причина старения резины. Некоторые антиоксиданты также защищают резину от повреждения при изгибе и нагреве.

Пигменты. Упрочняющие и инертные наполнители и другие ингредиенты резиновой смеси часто называют пигментами, хотя используются и настоящие пигменты, которые придают цвет резиновым изделиям. Оксиды цинка и титана, сульфид цинка и литопон применяются в качестве белых пигментов. Желтый крон, железоокисный пигмент, сульфид сурьмы, ультрамарин и ламповая сажа используются для придания изделиям различных цветовых оттенков.

        Каландрование. После того как сырой каучук пластицирован и смешан с ингредиентами резиновой смеси, он подвергается дальнейшей обработке перед вулканизацией, чтобы придать ему форму конечного изделия. Тип обработки зависит от области применения резинового изделия. На этой стадии процесса широко используются каландрование и экструзия.

Каландры представляют собой машины, предназначенные для раскатки резиновой смеси в листы или промазки ею тканей. Стандартный каландр обычно состоит из трех горизонтальных валов, расположенных один над другим, хотя для некоторых видов работ используются четырехвальные и пятивальные каландры. Полые каландровые валы имеют длину до 2,5 м и диаметр до 0,8 м. К валам подводятся пар и холодная вода, чтобы контролировать температуру, выбор и поддержание которой имеют решающее значение для получения качественного изделия с постоянной толщиной и гладкой поверхностью. Соседние валы вращаются в противоположных направлениях, причем частота вращения каждого вала и расстояние между валами точно контролируются. На каландре выполняются нанесение покрытия на ткани, промазка тканей и раскатка резиновой смеси в листы.

           Экструзия. Экструдер применяется для формования труб, шлангов, протекторов шин, камер пневматических шин, уплотнительных прокладок для автомобилей и других изделий. Он состоит из стального цилиндрического корпуса, снабженного рубашкой для нагрева или охлаждения. Плотно прилегающий к корпусу шнек подает невулканизованную резиновую смесь, предварительно нагретую на вальцах, через корпус к головке, в которую вставляется сменный формующий инструмент, определяющий форму получаемого изделия. Выходящее из головки изделие обычно охлаждается струей воды. Камеры пневматических шин выходят из экструдера в виде непрерывной трубки, которая потом разрезается на части нужной длины. Многие изделия, например уплотнительные прокладки и небольшие трубки, выходят из экструдера в окончательной форме, а потом вулканизуются. Другие изделия, например протекторы шин, выходят из экструдера в виде прямых заготовок, которые впоследствии накладываются на корпус шины и привулканизовываются к нему, меняя свою первоначальную форму.

            Вулканизация. Далее необходимо вулканизовать заготовку, чтобы получить готовое изделие, пригодное к эксплуатации. Вулканизация проводится несколькими способами. Многим изделиям придается окончательная форма только на стадии вулканизации, когда заключенная в металлические формы резиновая смесь подвергается воздействию температуры и давления. Автомобильные шины после сборки на барабане формуются до нужного размера и затем вулканизуются в рифленых стальных формах. Формы устанавливаются одна на другую в вертикальном вулканизационном автоклаве, и в замкнутый нагреватель запускается пар. В невулканизованную заготовку шины вставляется пневмомешок той же формы, что и камера шины. По гибким медным трубкам в него запускаются воздух, пар, горячая вода по отдельности или в сочетании друг с другом; эти служащие для передачи давления текучие среды раздвигают каркас шины, заставляя каучук втекать в фасонные углубления формы. В современной практике технологи стремятся к увеличению числа шин, вулканизуемых в отдельных вулканизаторах, называемых пресс-формами. Эти литые пресс-формы имеют полые стенки, обеспечивающие внутреннюю циркуляцию пара, горячей воды и воздуха, которые подводят тепло к заготовке. В заданное время пресс-формы автоматически открываются.

Добавил: Демьян |
Просмотров: 992
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]

Дипломник © 2024
магазин дипломов, диплом на заказ, заказ диплома, заказать дипломную работу, заказать дипломную работу mba